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The study [i] reported an empirical estimate of the energy threshold for the impulsive 
failure of a volume of water: it determined the minimum specific explosive energy e, re- 
quired for irreversible loss of continuity of a unit mass of water. The study examined the 
case when the length of a cylindrical shock wave (SW) was close to the diameter of the fluid 
cylinder being destroyed. A topic of inherent interest here is the effect of the parameters 
of the SW and the explosive bubble on the threshold value of the specific energy e, and the 
failure mechanism as a whole. This is the subject of the present investigation. 

Experiments were conducted by the method described in [i]. A thin explosive wire 2 was 
laid along the symmetry axis of a cylindrical volume of water 1 (Fig. la). The volume was 
bounded by a thin paper shell 3 and rigidly-fixed plane-parallel end plates 4. The wire ex- 
ploded, when we discharged a high-voltage capacitor bank onto it. The bank had a capacitance 
C and was charged to the voltage U. The explosion generated a cylindrical shock wave S and 
an expanding bubble in the water. After the wave S was reflected from the free surface to 
the center of symmetry of the water volume, an unloading wave converged. The development 
of the failure process behind the unloading wave was recorded with an SFR-I high-speed pho- 
tographic recorder. The tests were conducted with cylindrical water volumes of the radius 
R 0 = 2 cm and length L = 3 cm. 

The parameters of the capacitor circuit and, thus, the explosive process were chosen 
on the basis of the following considerations. According to [2], the acceleration of a fluid 
volume having free boundaries results in unlimited growth of initial perturbations on its 
surface which over time may lead to loss of continuity of the fluid volume, i.e., to its 
failure. However, in the case of an acceleration vector of low magnitude, such failure oc- 
curs only under the condition that the acceleration acts on the fluid volume for a sufficient- 
ly long time. Thus, in order to distinguish failure of the purely explosive type among all 
of the possible cases of failure of the fluid volume, it is necessary to impose a restric- 
tion on the duration of the volume's acceleration, i.e., on the time of its loading ~. In 
the problem being examined here, this is the time during which the pressure inside the ex- 
plosion bubble exceeds the atmospheric pressure, so that the fluid volume is being acted 
upon by acceleration and a shock wave is propagating in the fluid. Consequently, in each 
specific case, to determine �9 it is sufficient that a sensor record the pressure p(t) in the 
SW and thai: an oscillograph determine its duration. Thus, the loading time T, as the length 
of the SW, is determined by the parameters of the capacitor circuit: the capacitance of the 
capacitor bank, the inductance of the circuit ~, and the resistance of the circuit R. In 
this case, the specific explosive energy will depend on the voltage on the capacitor bank 
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Fig. 2 

U at the moment of explosion of the wire with fixed values of C, ~, and R [I] 

e = (El  + E2) /M.  

Here, E I is the energy in the SW calculated from the pressure oscillogram; E 2 is the energy 
of the explosion bubble (determined from its maximum radius in accordance with the method 
in [i]); M = R02Lp0 is the mass of the failed volume of fluid; P0 is its initial density. 

The tests showed that in the range of small values of e (0.1-0.3 J/g), failure of the 
fluid volume occurs as a result of the development of perturbations on the external and in- 
ternal boundaries of the expanding fluid ring over a period t, which is considerably longer 
than ~. However, within the framework of the explosive failure of a fluid volume examined 
in the present study, we examined only the case when irreversible loss of continuity of the 
volume occurred during the period of time t, ~ ~. Since, in accordance with the experimental 
data, t, decreases with an increase in e, then by increasing U the specific explosive energy 
is increased to the threshold values e = e, corresponding to cases of the development of ir- 
reversible loss of continuity during the period t, z ~. 

Figure 2 shows pictures of the process of failure of water volumes for four loading 
variants: a) �9 = 140 ~sec, t... ~ 180 ~sec, e = 3.2 J/g < e, (C = i00 pF, ~ = 3.6 pH, U = 3 
kV, nichrome wire ~0.i mm); b) T = 125 Dsec, t.~ = ~, e = e* = 5 J/g (C = i0 BF, % = 2.9 DH, 
U = i0 kV, wire of soft manganin PMM~0.2 mm);"c) T = 70 Dsec, t, = ~, e = e, = 2.5 J/g 
(C = 2 DF0 % = 2.6 pH, U = 15 kV, PPM~ 0.2 mm); d) �9 = 30 Dsec, t, = 25 Dsec, e = e, = 1.3 
J/g (C = I pF, % = 1.25 ~H, U = 17 kV, PPM~0.2 mm); R l and r I are the radius of the free 
surface and the explosion bubble. As the characteristic time of the process, we chose the 
time interval ~, during which the front of the unloading wave travels the distance from the 
free surface and the explosion bubble. As the characteristic time of the process, we chose 
the time interval ~, during which the front of the unloading wave travels the distance from 
the free surface of the fluid volume to the surface of the explosion bubble. Since the ve= 
locity of the unloading wave is equal to the speed of sound in water c o , then T, = R0/c 0 = 
13.3 psec. The dimensionless (with respect to ~,) loading times ~ = T/~, in the cases shown 
in Fig. 2a-d, are equal to 10.14, 9.4, 6, and 2.26, respectively. Analysis of the film rec- 
ord allowed us to establish the following. At ~ = 10.14 and 9.4, failure of the fluid vol- 
ume occurs as a result of the development of instability of initial perturbations on the in- 
ternal and external boundaries of the expanding cylindrical ring of fluid. With a decrease 
in the loading time (T = 6), along with the perturbations, the development of cavitational 
flow behind the unloading wave contributes to the irreversible loss of continuity. Finally, 
at ~ = 2.26, the medium loses continuity in~nediately behind the front of the unloading wave 
due to the intensive development of cavitational flow. However, since the pressure in the 
explosion bubble is still greater than the atmospheric pressure when the front of the unload- 
ing wave reaches the surface of the bubble, there is a small jump in acceleration of the in- 
ternal boundary of the fluid ring. As a result, the cavitation bubbles collapse in the 
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neighborhood of the boundary (Fig. 2d). However, over time, the development of perturbations 
on the boundary leads to loss of continuity in this part of the fluid ring as well. It is 
evident that if the pressure in the explosion bubble is equal to the atmospheric pressure 
when the front of the unloading wave reaches the surface of the bubble, i.e., if the accel- 
eration of the internal boundary of the fluid ring is equal to zero, then the cavitation bub- 
bles will not collapse in the vicinity of the boundary and purel~ cavitational failure of 
the fluid volume will occur. We did not examine the cases when T < 2.26. 

It should be noted that besides the above-examined types of failure of the fluid volume, 
cleavage failure can also take place in the fluid according to the data in [3, 4]. It fol- 
lows from Fig. 2 that development of loss of continuity of the fluid ring due to cavitation 
occurs considerably more rapidly than in the case of hydrodynamic instability of the pertur- 
bations (Fig. 2a, b). This is related to the fact that the perturbations are generated on 
the boundaries of the ring and, as they grow, failure extends into the depth of the fluid. 
Cavitational flow, on the other hand, develops from bubble nuclei immediately behind the 
front of the convergent unloading wave. 

To explain the dependence of the character of failure of the fluid volume on the loading 
time, we evaluated the effect of the profile of pressure reduction behind the front of the 
shock wave on that part of the specific explosive energy e expended on the development of 
cavitational flow. 

We will examine the problem of the reflection of a unidimensional divergent cylindrical 
shock wave (DCSW) (Fig. la) from the free surface r = R 0 with the assumption of the absence 
of cavitation nuclei in the fluid, i.e., we will examine the reflection in an elastic fluid 
without loss. The pressure in the unidimensional DCSW is given in the form of the function 

r)= 
Here,  f+(r.,. +, r )  i s  a con t inuous  f u n c t i o n  of  r ;  f+(r.~ +, r )  = P+(r.~ +) a t  r = r.~ +, < P+(r~ +) 
at r < r.+? o(r -- r. +) = i at r < r. +, 0 at r > r .+~ P+(r. +) is the pressure"in%he f~ont 
of the DCSW; r... + is"the coordinate of the front. For the sake of determinateness, we assume 
that at r... + the length of the wave is greater than or equal to R 0. Since the pressure in 
the expanding explosion bubble decreases, P+(r, +, r) can only be a monotonically decreasing 

t 

function of[ r. Meanwhile, since r, + = r o + ;D+dt' (where D+ is the velocity of the front 
O 

of the DCSW and r 0 is the initial radius of the explosion bubble r1(t)) , then P+(r, +, r) is 
an implicit function of time. 

We used the well-known method of a reflected imaginary source [3] to construct a func- 
tion which describes an unloading wave reflected from the free surface r = R 0 after a DCSW 
reaches this surface. It is assumed that at the moment the front of the DCSW reaches the 
boundary r = R0, a convergent cylindrical shock wave (CCSW) begins to propagate in the region 
r i < r ~ R 0 (Fig. ib). The pressure profile behind the CCSW is 

P_(r;, r)=/_(r;,  r)o(r--r~), (2) 

where f_(r,-, r) < 0 is a continuous function of r; If_(r,-, r)[ = IP_(r,-) l at r = r, , 

S IP_(r,-)II at r > r, ; o(r - r,-) = 1 at r ~ r, , 0 at r < r,-; P_(r,-) is the pressure 
B 0 

in the front of the DCSW; r,- is the coordinate of the front. At each moment of time S dr/D+ 
r l  r 0 

= to~t~to.+ ~ dr/D_(O_ i s  t he  v e l o c i t y  of  the  CCSW f r o n t )  the  e q u a l i t y  below is  s a t i s f i e d .  
R 0 

P+ (FZ, ~1) -~ ~- (r[, ~1) = 0, (3) 

this equality following from the condition that the pressure on the free surface r = Ri(t) 
always be equal to the atmospheric pressure. Then the pressure in the unloading wave is ex- 
pressed in the form of the linear superposition of (i) and (2) 

~ ( r ; ,  r ) = P + ( r t ,  r)+P_(r;,  r). (4) 

It follows :from (3) that since P+[r, +, R1(t)] decreases monotonically with time, then with 
allowance for the focusing of the CCSW, the function P_(r,-, r) increases monotonically with 
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respect to the modulus with a reduction in r at fixed r...-. 
the function P(r,-, r) is also continuous and for fixed"r;c- 
respect to the modulus as r decreases. 

At a given moment of time at the point r,- < r <_ RI, the values of P+(r, +, 
P_(r,-, r), with allowance for (3), are expressed through their gradients: 

? 

P+(r  + , r ) = p + [ r  + , R  l ( t ) ] +  .[ VP+(r  +,r')dr', 
R~(t) 

P_ ( r . ,  r) = -- P+ [r +,/71 (t)] + i VP_ (r . ,  r') dr'. 
/~l(t) 

Then, in accordance with (4), 
increases monotonically with 

r) and 

Inserting these expressions into (4), we obtain a relation which describes the pressure dis- 
tribution along r in the rarefaction wave: 

~(r[, r ) = - - i  [ I § (/;7, I ] (5) 
e~(t) 

Since the rarefaction wave results in radial extension of the cylindrical fluid ring, we can 
write the specific internal elastic energy of the fluid behind the wave front in the form 

p 

= ~--~Pzdp with allowance for the isentropic nature of the process. Expressing the 

density of water p through p, replacing p by P, and allowing for (5), we use the Tate equa- 
tion at p < 108 Pa to obtain the increment in the specific internal elastic energy of pure 
water in the rarefaction wave 

0 o RI( o - ( 6 )  

q-t[ t i (lOP+(r+'r')l+, ['!l) dr '+--]  "~- } . ]oP_(rZ,  Po z 

n=t |p~c. 2 J dr' dr' . . . .  [ 0. R,.) P0 c~ 

Here, P0 and P0 are the atmospheric pressure and the density of the water at p = P0; n = 
7.15. The below expression gives the total increment of the elastic energy of a section of 
the cylindrical water volume of length L at the moment the front of the rarefaction wave ar- 
rives at the surface of the explosion bubble r = r1(t) 

ai(t) 
AE = 2~L ~ p~rdr. (7) 

q(O 
Thus, a f t e r  the  DCSW reaches  the  f r e e  s u r f a c e  of  a c y l i n d r i c a l  volume of  water  not  con t a in -  
ing bubble n u c l e i ,  a r a r e f a c t i o n  wave converges  toward the  c e n t e r  and in t h e p r o c e s s  s u b j e c t s  
the fluid volume to radial tension, increasing its internal elastic energy AE. Here, in ac- 
cordance with (6), (7), AE will be greater, the greater the gradient of the pressure drop 
behind the front of the DCSW. In an actual fluid containing bubble nuclei, almost no rare- 
faction wave is recorded after the SW reaches the free surface: the elastic energy is con- 
verted into work done in expansion of cavitation bubbles. In accordance with (6) and (7), 
with a very small pressure drop behind the DCSW front, the value of AE of pure water will 
be negligible because nearly all of the energy of the DCSW will be converted to kinetic 
energy associated with the radially expanding cylindrical layer of water. This in turn will 
increase the rate of growth of perturbations on both boundaries of the layer. The results 
of analysis of Eqs. (6) and (7) agree well with the experimental data. In Fig. 2b, P+(r, + = 
R 0) = 5-i0 v Pa and the loading time ? = 9.4, i.e., the length of the SW is much sreater than 
R 0. Thus, due to the low pressure gradient behind the wavefront, the value of AE is small, 
and most of the energy of the explosion is converted to kinetic energy of the fluid. This 
increases the rate of development of perturbations causing the fluid volume to fail. In 
Fig. 2d, P+(r, + = R 0) = 4.7"107 Pa and ~ - 2.26, i.e., the pressure gradient behind the 
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front of the DCSW and, hence, AE are appreciably greater. This also leads to the intensive 
development of cavitational flow. 

In accordance with the experimental results obtained here, a reduction in T (i.e., a 
reduction in the time of propagation of the SW) is accompanied by a reduction in the energy 
threshold for failure of the fluid volume. Thus, with a decrease in ~ from 9.4 to 2.26, the 
value of e, decreases from 5 to 1.3 J/g. This is evidently connected with the fact that at 

= 2.26, nearly all of the energy of the DCSW is converted to work to expand cavitation bub- 
bles, while at �9 = 9.4 it is converted to kinetic energy associated with the radial expansion 
of the fluid ring. Only part of this energy is expended on the development of perturbations 
on the boundaries of the fluid volume, which also lead to its failure. 

If we introduce the parameter N = e/T - the rate of release of explosive energy (i.e., 
the rate of release of specific explosive energy averaged over the loading time), then at 
e = e... the parameter N.~ = e.../T takes similar values in all of the cases shown in Fig. 2b-d: 
N... = 40, 3(i, and 43 kJZ(g'sec), respectively. Thus, whereas e.~ depends on the loading time 
(i.e., on the parameters of the SW and the explosion bubble), The threshold value of the rate 
of release of explosive energy N, is a more universal parameter. It characterizes the energy 
threshold for failure of the water volume, since loading remains nearly constant within the 
range of conditions examined here. 

We thank V. K. Kendrinskii for his discussion of this investigation. 
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CALCULATION OF THE DISPERSION OF A COMPRESSED VOLUME 

OF A GAS SUSPENSION 

Yu. V. Kazakov, A. V. Pedorov, and V. M. Fomin UDC 532.529:533.6.071.1 

Much attention is currently being given to the physical and mathematical modeling of 
multiphase systems due to the extensive use of various types of technologies which involve 
heterogeneous and homogeneous media. Surveys of the mathematical modeling of certain prob- 
lems of the mechanics of heterogeneous media can be found in [1-3]. 

In experiments set up to study the wave dynamics of a gas suspension of solid particles, 
the emphasis is generally placed on the interaction of shock waves (SW) with clouds of dust- 
laden gas. An experimental study was made in [4] of the rarefaction of a gas suspension in 
order to examine the effect of the dust content of a medium with a high mass content of par- 
ticles under high pressure on the parameters of a shock wave formed in the discharge of such 
a medium into free space. The question of the discharge conditions is important from the 
viewpoint of the safety of different types of equipment (pipelines for transporting bulk ma- 
terials, chemical reactors employing fluidization, etc.). The process of rarefaction of a 
gas suspension was examined in [5]. Here, the authors ignored the volume content of parti- 
cles and analyzed the dispersion of a gas suspension in a vacuum. The study [6] calculated 
the explosive dispersion of a cloud of a gas suspension in the case of relatively small 
volume contents of the disperse phase, while the study [7] examined an outburst of coal and 
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